
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1409
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A SECURE FRAMEWORK FOR HADOOP
COMMUNICATION

Gobinda Paul,S. M. Monzurur Rahman

Abstract—This paper proposes a framework, namely, HSMF (Hadoop Secure Messaging Framework). Now a day, it requires efficiency in
processing billion bytes of data (binary) particularly through business processes. It also has become expensive to ensure reliability in each
and every application that processes large amount of datasets (complex or structured). Hadoop platform was designed to address these
issues. It was designed mainly for enterprise solution. Our goal is to establish secure communication between hadoop and smart devices
or applications, so that applications of smart devices can send queries to hadoop and display respective results. HSMF is based on XML
(Extensible Markup Language) message over TCP/IP which gives hadoop more flexibility in order to communicate not only with java based
applications but also with applications written in other languages such as C/C++, C#, Python, Dot Net framework etc. Since XML is
generated dynamically, client application may choose DML (Data Manipulation Language) of hadoop using HSMF. Client application does
not require knowing the design of dataset, it only performs query on particular dataset based on user requirement. During communication
via TCP/IP, every XML message header is checked and matched by a messaging header checking mechanism. This is why HSMF is
secure. Our results show a successful communication between hadoop and smart devices or applications where smart devices and
applications send query to hadoop and display the result received from hadoop.

Index Terms— HSMF, Hive, Hadoop, HDFS, Map-Reduce, Bigdata.

—————————— ——————————

1 INTRODUCTION
adoop [3] is an open source software framework for
storage and large scale processing of data-sets in parallel
in a distributed environment (clusters) [2]. Hadoop is

not only a software platform but also offers distributed
computing and computational capabilities at relatively low
cost. It has feature like scalability to meet the anticipated
exponential increase in data generated by mobile technology,
social media, internet, and other emerging digital
technologies. It contains two key components: data storage
mechanism with the help of Hadoop Distributed File System
[4] and high-performance large-scale data processing using
MapReduce framework [1]. MapReduce is the heart of
Hadoop. It is this programming paradigm that allows for
massive scalability across hundreds or thousands of servers in
a Hadoop cluster. The MapReduce concept is fairly simple to
understand for those who are familiar with clustered scale-out
data processing solutions.

A new network-levitated xml [7] based communication

mechanism HSMF (Hadoop Secure Messaging Framework)
improves Hadoop framework, provides additional feature in
the original framework. HSMF is implemented based on
TCP/IP protocol with security checking mechanism [9].

In this paper, we will explain the details of design and

implementation of a TCP/IP implementation of HSMF. Two
components, ‘server’ and ‘client’ are introduced to realize the
TCP/IP connection that can fetch data from end user and send

them to server within the new network-levitated xml [7]
messaging mechanism. XML is generated dynamically on
HSMF, user can select from where to take data for analysis for
example: apache hive [10], apache pig [11] etc. Multithreading
technologies are used to manage memory pool, send/receive,
and merge data segments.

1.1 Background
 Efficiency in processing billion bytes of data (binary)
particularly through business processes is crucial in today
world when we are in one global village. It also has become
expensive to ensure reliability in each and every application
that processes large amount of datasets (complex or
structured). Hadoop platform was designed to address these
issues. It was designed mainly for enterprise solution. One of
many other challenges at present is how the small smart
devices will communicate with hadoop for big data processing
and analysis? For example there is a cricket match going on
today. I want to predict based on statistical data and analysis
with my smart phone that which team is going to win. I have
twenty years of big data regarding weather, players’ statistical
records on their performance, pitch condition and so on. Now
I want this prediction to be done using hadoop where the
processing time for hive, pig, etc. are different. The obvious
questions are: Is it possible to choose the DML dynamically on
the basis of user requirements so that we can be able to
process faster and how much security I have in order to have
the desired result through all the processing. These are the
questions that inspired me to start this paper work and
eventually reach to solution.

1.2 Methodology
 In this paper, HSMF framework based on TCP/IP socket
system through designing a messaging models using hadoop
java library. The framework has two major parts. One is

H

————————————————
• Gobinda Paul is currently pursuing masters degree program in Computer

Science & Engineering in United International University, Dhaka,
Bangladesh. ID-012122002. E-mail: gobinda@live.com

• Prof. Dr. S. M. Monzurur Rahman, Professor, School of Science &
Engineering in United International University, Dhaka, Bangladesh. E-
mail: mrahman99@yahoo.com

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1410
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

‘server’ and another is ‘client’. A server application was
written on hadoop name-node server using hadoop java
library with the help of xml and socket library which takes
communication request from authorized application based on
server side of HSMF model. As a result, if any particular
device or application wants to communicate with hadoop
dataset, it needs to send query as a request message (format
based on HSMF) to server application on a particular port over
internet or intranet. On the other hand, server application
running on name-node server, accepts request from
preauthorized client application (it mainly takes query request
from clients) and opens a job request for hadoop and stores
the result on an application list. Though, client application
sends request to get update notification to server application,
server application searches on that application list and reply to
client with current status or result.

2 OVERVIEW OF PROPOSED HSMF
 Hadoop was born out of a need to process mass data. Our
proposed framework is not modifying hadoop but to give
hadoop more reliability and flexibilities in communication
with other applications. According to our proposed
framework, we need to write a server socket based application
with support of xml, hadoop, hive, pig library or next
upcoming library.
 Server application always listens on a particular port in order
to receive request message from client. Once server
application receives xml query request, first tokenize xml
message and pickup query message with DML, send that to
hadoop to get the result. Once query process completed, query
result is stored into a java list or mysql or oracle database or in
a flat file.
 Client application sends query status message to know
whether hadoop process is completed or not. If the requested
query is processed successfully by the server, then server
application makes an xml message with result and gives reply
when client application sends query status message. Else if the
query is under process or failed, server application generates
xml with query under process or query failure message to
client application.
 Our HSMF Framework stands on four core messaging
patterns. Those are a) Query Request, b) Query Reply, c)
Query Status and d) Query Status Reply. HSMF two message-
Query Request and Query Status originate from client side
and Query Status Reply and Query Reply generate at server
side shown on Figure 2.1. Details description of core
framework message is given in HSMF Communication
section.

Figure 2.1: Communication between server and client
application of HSMF.

2.1 HSMF Communication Messages
 The detailed description of HSMF is describe as bellow-

I) Query Request
 In this section of the framework, we send the xml message
(Table 1) from the client application to server application for
sending query request. This message is sent from client
application to server application. The format of Query Request
message pattern is shown below Table 1.

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QREQ</type>
 <secret>...</secret>
 <session>...</session>
 <clientip>...</clientip>
 <qlang>...</qlang>
 <qpram>...</qpram>
 <query>...</query>
 </message>
</Hadoop>

Table 1: Query Request Message Format
 If we look closer to the above query request message, it
contains different tags. A small detail about the tags is
presented below.

<type> helps server application to determine the type of the
message. In this section, type value is QREQ to represent
Query Request message.

<secret> helps us to determine whether it is a valid message or
not. Same secret is also there on server side application. Once
an xml message is received to server application first check
whether the secret matches or not.

<session>maintains unique session originated from client side
to avoid or discard multiple similar request at server side
application.

<clientip>determines the server that authenticated client’s
request its trying to process.

<qlang> used for dynamically select DML to process query.

<qpram> determines the number of column(s) server wants to
be processed against the query, this tag is useful for server
application for validate the tag <query> and map or bind
column(s) . (i.e. possible to search column(s) from query but
it’s improve processing capability because smart application

S e r v e r

C
 l i e n t

Query Request

Query Status

Query Status Reply

Query Reply

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1411
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

need to search and map to process)

<query> carries the main query message to server application.

An example of our Query request message is show in table 2

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QREQ</type>

<secret>67333ab60f13242b33408d4242ceac8e</secret>
 <session>w4erg6udtjvdtyj</session>
 <clientip>192.168.1.10</clientip>
 <qlang>HIVE</qlang>
 <qpram>2</qpram>
 <query>select id,name from employee where
name="gobinda"</query>
 </message>
</Hadoop>

Table 2: An Example Of Query Request Message

 In this example (Table 2), we see that client application
send a request to the server application to know the id and
name from the table employee where as employee table store
in hive warehouse. User request sending device ip 192.168.1.10
and md5 share secret of UIU is 67333ab60f13242b33408d4242c
eac8e. Originating session is w4erg6udtjvdtyj. Clients notify to
server application that it’s sending only two columns (id &
name) via qpram tag. Given query should process by hive
representing qlang tag.

II) Query Reply
 In this section of the framework, we send the xml (Table 3)
message from the server application to client application for
sending query request result. This message only has been sent
when server application received Query Status message to
know the update or output of the previous message Query
Request. This message has been sent from server application
to client. The format of Query Reply message is shown as
bellow table 3.

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QREP</type>
 <secret>...</secret>
 <session>...</session>
 <clientip>...</clientip>
 <queryrow>...</queryrow>
 <queryout1>
 <qpram1>...</qpram1>
 <qpram2>...</qpram2>
 </queryout1>
 ...
 ...
 <queryoutN>
 <qpramN>...</qpram N>
 <qpramN>...</qpram N>
 </queryoutN>
 </message>
</Hadoop>

Table 3 : Query Reply Message Format

 If we look closer to the above query reply message, it
contains different tags. A small detail about the tags is
presented below.

<type> helps client application to determine the type of the
message. In this section type value is QREP to represent Query
Reply message.

<secret> helps us to determine whether it is a valid message or
not. Same secret is also there on client side. Once an xml
message is received to client application first check whether
the secret matches or not.

<session> maintains unique session to avoid or discard
multiple similar request at client side.

<clientip>determines the client that authenticated server’s
request, it’s trying to process. In this section clientip tag carry
the value of server ip.

<queryrow> helps the client application to determine the
number of rows will contain in this message. So the client
application can easily maintain a loop to collect data
iteratively. If say <queryrow> value 2, then client application
can easily generate a tokenized mechanism for first row value
under <queryout1> and next <queryout2>.

<queryout1> represents the first row values if multiple rows
generated then the suffix of row number added on the tag
<queryout1…N>

<qpram1> represents first row’s first column value, similarly
<qpram2> to <qpramN> contains next column value based
on user request.

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1412
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A example of Query Reply message show in Table 4.

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QREP</type>

<secret>67333ab60f13242b33408d4242ceac8e</secret>
 <session>w4erg6udtjvdtyj</session>
 <clientip>192.168.1.254</clientip>
 <queryrow>2</queryrow>
 <queryout1>
 <qpram1>1</qpram1>
 <qpram2>gobinda</qpram2>
 </queryout1>
 <queryout2>
 <qpram1>2</qpram1>
 <qpram2>yemon</qpram2>
 </queryout2>
 </message>
</Hadoop>

Table 4: An Example Of Query Reply Message

 In this example (Table 4), we see that client application
receives a xml message from the server application which
contains two rows and two columns. First row contains 1,
gobinda and second row contains 2, yemon. User request
sending device ip 192.168.1.10 and md5 share secret of UIU is
67333ab60f13242b33408d4242ceac8e.Originating session is
w4erg6udtjvdtyj.

III) Query Status
 In this section of the framework, we send the xml message
(Table 5) from the client application to server application for
get updates of desire query result. After receiving Query
Status message, server application first check it’s process list, if
the query already processed, then server application generate
and send Query Reply xml message else if any error occurred
by processing query or requested query already under process
then generate and send Query Status Reply xml to notify the
client application. . The format of Query Status message is
show in bellow table 5.

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QSTAT</type>
 <secret>...</secret>
 <session>...</session>
 <clientip>...</clientip>
 <qlang>...</qlang>
 <qpram>...</qpram>
 <query>...</query>
 </message>
</Hadoop>

Table 5: Query Status Message Format

 If we look closer to the above query reply message, it
contains different tags. A small detail about the tags is
presented below.

<type> helps client application to determine the type of the
message. In this section type value is STAT to represent Query
Satus message.

<secret> helps us to determine whether it is a valid message or
not. Same secret is also there on client side. Once an xml
message is received to client application first check whether
the secret matches or not.

<session> maintains unique session to avoid or discard
multiple similar request at server side.

<clientip> determines the server that authenticated client’s
request its trying to process. In this section clientip tag carry
the value of client ip.

<qlang> is used for dynamically select DML to process query.

<qpram> determines the number of column(s) server wants to
be processed against the query, this tag is useful for server
application for validate the tag <query> and map or bind
column(s) . (i.e. possible to search column(s) from query but
it’s improve processing capability because smart application
need to search and map to process)

<query> carries the main query message to server application.

 This Query Status message is similar to Query Request
message except type. In any network circumstances, if server
application is not able to receive Query Request message but
server application receive Query Status message on same
session of Query Request, then server application convert
Query Status message into Query Request message and
process accordingly. Query Status message send to server
application periodically after thirty second (maximum twenty
times) until client application get positive reply at server end.
After sending these messages to server client application wait
thirty sec for getting reply from server. Server application
send two type of reply against this Query Status message,
Server application check its internal list of query result, if
process completed successfully then server reply Query Reply
message else reply Query Status Reply message to client
application. A example of Query Status message show in Table 6.

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1413
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QSTAT</type>

<secret>67333ab60f13242b33408d4242ceac8e</secre
t>
 <session>w4erg6udtjvdtyj</session>
 <clientip>192.168.1.9</clientip>
 <qlang>HIVE</qlang>
 <qpram>2</qpram>
 <query>select id,name from employee where
name="gobinda"</query>
 </message>
</Hadoop>

Table 6: An Example Of Query Status Message

 In this example (Table 6), we see that server application
receives a xml message from the client application to know the
status of process id and name from the table employee where
as employee table store in hive warehouse. User device ip
192.168.1.9 and md5 share secret of UIU is 67333ab60f
13242b33408d4242ceac8e.Originating session is w4erg6udtj
vdtyj. Clients notify to server application that it’s sending only
two columns (id & name) via qpram. Given query should
process by hive representing qlang tag.

IV) Query Status Reply
 In this section of the framework, we send the xml message
(Table 7) from the server application to client application for
giving the update of query processing status. Both Query
Status Reply and Query Reply message is generated by the
server application when server application receives Query
Status message but main difference is ,Query Reply message is
generated when request query already processed and result
stored into a list else any error or query already in progress
mode then server side generated Query Status Reply message.
The format of Query Status reply message like as bellow table
7.

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QSTATREP</type>
 <secret>...</secret>
 <clientip>...</clientip>
 <reason>...</reason>
 </message>
</Hadoop>

Table 7: Query Status Reply Message Format

 If we look closer to the above Query Status Reply
message, it contains different tags. A small detail about the
tags is presented below.

<type> helps client application to determine the type of the
message. In this section type value is QSTATREP to represent
Query Reply message.

<secret> helps us to determine whether it is a valid message or
not. Same secret is also there on client side. Once an xml
message is received to client application first check whether
the secret matches or not.

<session> maintains unique session to avoid or discard
multiple similar request at client side.

<clientip>determines the client that authenticated server’s
request, it’s trying to process. In this section clientip tag carry
the value of server ip.

<reason>helps client application to determine the reason of
processing failure or if query is under process.
 If client application receives Query Status Reply message
then stop sending Query Status message and display result of
the query user UI.A example of Query Status Reply message
show in Table 8.

<?xml version="1.0" encoding="UTF-8"?>
<Hadoop>
 <message>
 <type>QSTATREP</type>

<secret>67333ab60f13242b33408d4242ceac8e</secret>
 <clientip>192.168.1.254</clientip>
 <reason>INVALID QUERY FORMAT</reason>
 </message>
</Hadoop>

Table 8: An Example Of Query Status Reply Message

In this example (Table 8), we see that client application
receives a xml message from the server application which
contains a reason invalid query. Originating session is
w4erg6udtj nvdtyj. User request sending device ip
192.168.1.254 and md5 share secret of UIU is
67333ab60f13242b33408d4242ceac8e.

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1414
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3 ARCHITECTURE OF PROPOSED FRAMEWORK
 Our proposed Framework can easily communicate with
hadoop over internet or intranet to almost all platform like a
apps written in android or symbian or in desktop application.
In the architecture of this framework a java and hadoop
library based socket server application stay at the namenode
server of hadoop which main goal to accept client xml
messaging request on a particular socket port (say 9090) and
reply accordingly after client request been processed. A
communication model of our HSMF is shown in the figure 3.1.

Figure 3.1: HSMF Communication

3.1 Server Side
 According our HSMF, a server application was run as
demon to take request, process it and reply to client
application. The data flow diagram of server application are
given in bellow figure 3.2

Data flow Diagram

 A details data flow diagram of HSMF server
application process is shown as bellow.

Figure 3.2: Server Side Data Flow Diagram.

I. In the server side , a server application is always listening
on a particular port say 9090 on demon mode, once is get any
xml request from the client it’s it send to XML parser to parse
the message to get message type, session, origination ip,
shared secret and query message.

II. A checker process check message type from tokenize
message ,if the message type not match with Query Request
(QREQ),Query Status (QSTAT) then send to Discard Or Drop
the client message .

III. If the Message Type Match with Query Request (QREQ)
then check the session whatever same message accept
previously or not.
 If same message receive and it’s under process simply
discard with no reply else store request in an array or could be
in database like mysql or flat file system with query for feature
process.
 A background thread being run on system to check the list
and to collect unprocessed query message with query
processing language request sent by the client .

IV. If the Message Type Match with Query Status (QSTAT)
then check the session whatever same message accept
previously or not.
 If same message receive server application search internal
list whatever is process successfully or not.
 If requested query status already process then server

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1415
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

application generate Query Status Reply (QSTATREP) xml
with proper data and send that to client via socket (9090 port).

If server application find out that Query Status (QSTAT)
message not process previously then generate Query Status
Reply(QSTATREP) xml with reason Not Found and modify
XML like Query Request (QREQ) message and send that to
server application unprocessed list .

 This scenario could be happen only if somehow server
application not received Query Request (QREQ) previously
but client send Query Status (QSTAT) message to get the latest
update.

3.2 Client Side
 According our HSMF, a client application should follow
XML messing pattern, so that client application easily
communicate with server to get requested hadoop data. The
data flow diagram of client application is given in bellow
figure 3.3.

Data flow Diagram
A details data flow diagram of HSMF client application
process is shown as bellow.

Figure 3.3: Client Side Data Flow Diagram.

I. In the client side, client application is not always listening on
a particular port. Once a query request received by the client
application, it’s generate a Query Request (QREQ) XML with
message type, session, origination ip ,shared secret send to
server.

II. After sending Query Request (QREQ) message to server,
client application periodically send Query Status (QSTAT)
every 10 second until received Query Status Reply
(QSTATREP) message from server application.

III. When client application received Query Status Reply
(QSTATREP) xml reply from the server it’s it send to XML
parser to parse the message to get message type, session,
origination ip ,shared secret and query message.

IV. A checker process check message type from tokenize
message ,if the message type not match with Query Status
Reply (QSTATREP) then send to Discard Or Drop the server
message .

V. If the Message Type Match with Query Status Reply
(QSTATREP) then check the session whatever same message
accept previously or not. If same message receive and it’s
under process simply discard or drop else display receiving
data from server.

4 CONCLUSION
This paper described the implementation and evaluation of

an alternative communication between hadoop and smart
application over TCP/IP. Our HSMF can be used as a plug-in
of hadoop which is useful for commercial cloud systems [5] to
gain good benefits from HSMF.

We have presented some key technologies that deal with
large scale of data sets in HSMF including multi-threading,
xml messaging mechanism and buffer allocation management.
Then we introduced two important components- XML
messaging based Socket Server and Client. When client gets a
any request from user, it will send that request to the server.
In server side there is a thread to read client xml request by
shared secret based security checking mechanism and keep
the request in a pool. Another thread will be wake up to pull
the request and send data to hadoop hive or pig depending on
the choice of clients and store the result in a flat file or
memory pool for feature response in output request. Once
server side receives output request reply instantly via TCP/IP
socket. One receive thread in client side receives data and
display to client User Interface. All of the buffers are allocated
to a memory pool in the beginning, threads can get empty
buffers from this memory pool to do their work and return
them when they don’t need them.

 The discussion regarding our HSMF outlines the possible
ways of how a user or device can easily communicate with
hadoop data. From the experimental results we find that our
HSMF can achieve better performance and the scalability is
good.
 In the future, we will need to test our HSMF on much

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1416
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

larger commercial cloud systems, which can better
demonstrate the benefits of our work. Currently HSMF works
with text based data or query. We will also work with HSMF
for image and voice type data processing. .

ACKNOWLEDGMENT
The authors wish to thank Prof. Dr. Monzurur Rahman. This
work was supported in part by a grant from United
International University.

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” in Proceedings of the 6th
conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 10–10.

[2] White T (2010) Hadoop: the definitive guide. Yahoo Press.

[3] Hadoop: The Definitive Guide, Third Edition by Tom
White (O'Reilly - 2012)

[4] Apache, “Hdfs”, http://apache.hadoop.org/hdfs/
Accessed: 02/12/2014.

[5] Cloud computing, http://en.wikipedia.org/wiki/Cloud

computing Accessed: 02/12/2014.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung, “The Google File System,” pub. 19th ACM
Symposium on Operating Systems Principles, Lake
George, NY, October,2003

[7] Fadika, Z. ,”Parallel and distributed approach for

processing large-scale XML datasets” in Grid Computing,
2009 10th IEEE/ACM International Conference, Banff, AB

[8] Peisen Yuan, Chaofeng Sha, Xiaoling Wang, Bin Yang,
Aoying Zhou, Su Yang , “XML Structural Similarity
Search Using MapReduce” in 11th International
Conference, WAIM 2010, Jiuzhaigou, China, July 15-17,
2010. Proceedingson.

[9] Karnati Hemanth, Talluri Ravikiran, Maddipati Venkat
Naveen,Thumati Ravi "Security Problems and Their
Defenses in TCP/IP Protocol Suite",International Journal
of Scientific and Research Publications, Volume 2, Issue
12, December 2012

[10] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Ning Zhang 0002, Suresh Anthony,
Hao Liu, and Raghotham Murthy, “Hive - a petabyte scale

data warehouse using hadoop,” In ICDE, pages 9961005,
2010..

[11] Apache Pig Wiki.
http://wiki.apache.org/pig/PigPerformance. Accessed:
02/12/2014.

[12] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins, “Pig latin: a not-so-
foreign language for data processing” In SIGMOD08:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 10991110, New
York, NY, USA, 2008. ACM.

[13] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, Khaled Elmeleegy, and Russell Sears,
“MapReduce Online” In NSDI, pages 312328, April 2010.

[14] Yandong Wang, Xinyu Que, Weikuan Yu, Dror
Goldenberg, Dhiraj Sehgal, “Hadoop Acceleration
Through Network Levitated Merge” Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011.
ACM.

 IJSER

http://apache.hadoop.org/hdfs/

	1 Introduction
	1.1 Background
	1.2 Methodology

	2 Overview of proposed HSMF
	2.1 HSMF Communication Messages

	3 Architecture of Proposed Framework
	3.1 Server Side
	3.2 Client Side

	4 Conclusion
	Acknowledgment
	References

